- 註冊時間
- 2015-2-22
- 最後登錄
- 2024-2-25
- 主題
- 查看
- 積分
- 676
- 閱讀權限
- 90
- 文章
- 841
- 相冊
- 0
- 日誌
- 0
狀態︰
離線
|
GODMX 發表於 2016-12-20 01:05
不要給錯誤的觀念好嗎?
英國科學期刊 Scientific Reports 自己找找吧
我起初看到這篇
我想否認
但我是九官鳥
說之前一定要有個根據
我把我自己打臉了
Altmetric: 665Views: 38,099Citations: 1More detail
Article | OPEN
The effect of bean origin and temperature on grinding roasted coffee
Erol Uman, Maxwell Colonna-Dashwood, Lesley Colonna-Dashwood, Matthew Perger, Christian Klatt, Stephen Leighton, Brian Miller, Keith T. Butler, Brent C. Melot, Rory W. Speirs & Christopher H. Hendon
Scientific Reports 6, Article number: 24483 (2016)
doi:10.1038/srep24483
Download Citation
Applied physicsBiophysical chemistryMaterials science
Received:
11 December 2015
Accepted:
16 March 2016
Published online:
18 April 2016
Abstract
Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.
Introduction
Second only to oil, coffee is the most valuable legally traded commodity. There are two biologically dissimilar species of coffee grown for consumption; Coffea canephora (robusta) and Coffea arabica (arabica)1. Whilst robusta is both less chemically complex and less flavoursome than arabica, it benefits from being feasibly grown at low altitude and is pest resistant. However, over 60% of the global coffee consumption is of arabica. In 2014, Brazil and Colombia combined to produce over 3.5 million tonnes of green arabica2, with Ethiopia and other African and Central American producers also making significant contributions. Including countries like Vietnam which almost exclusively produces robusta, global coffee production amounts to 8.5 million tonnes annually.
With the exception of unusual green coffee medicinal and dietary preparations, coffee is not typically consumed as a solid but rather an extract from the roasted seed3,4,5,6,7,8,9. Coffee beans are imported, roasted, ground and then brewed (including instant coffee) in coffee shops and homes. In such a valuable industry, the quality and yield of the product is paramount. However, there are many variables that influence the flavour, yield and overall enjoyment of this mass consumed beverage10. The challenges associated with ensuring coffee quality can be divided into two categories i) variables associated with the country of origin and ii) variables associated with consumption.
Besides typical botanical influences including climate and altitude, there are two general considerations that affect the coffee at the origin: the variety of coffee (e.g. Typica, Pacamara, Geisha)11 and the processing method (i.e. washed, pulped and natural). The variety defines chemical characteristics of the bean, and also the conditions in which it may be grown. Ideally, the fruit of the coffee bean should not ripen more rapidly than the ovum develops, otherwise the seed is lacking chemical complexity. Conversely, the fruit should be able to ripen in variable climate conditions thereby permitting the formation of the seed. Genetic variety hybrids are now ubiquitous and often feature the best of both of the parent varieties12,13.
Irrespective of the variety, all coffee is processed in one of three general methods. The washing (or wet) process is the most common, and uses water to remove the skin and fruit of the cherry, leaving only the seeds to dry in the sun. The pulped (pulped natural) processing method removes the skin from the cherry, but does not fully remove the mucilage. This then forms a sun-hardened sugar-rich shell around the parchment (the thin protective layer for the seed). The natural process is simply the sun-drying of the coffee cherries with both seed and fruit intact.
Whilst the processing method used has a profound impact on flavour, the chemical mechanisms which dictate these differences are not well-understood. Regardless of the cherry processing method, after drying the beans are hulled, which exposes the bean by removing all the dry parchment, mucilage, or skin. The green coffee beans are then transported to roasteries, where the roaster develops a roast profile with the aim of producing the most flavoursome cup to their palate. The roast profile is a two variable problem of temperature and time, but due to limitations of roasting equipment and the inhomogeneity of heat transfer into green coffee14, the development of a roast profile is more artistic than scientific, although there is certainly room for improvement in this area.
The roast profile presented in Fig. 1 shows the measured roaster temperature as the roasting progresses for the particular Tanzanian coffee listed in Table 1. The chemical constituents of roasted coffee depend on the temperatures of green coffee molecular decomposition. The generation and concentration control of these compounds is achieved through fine tuning of the roast profile15,16,17. Whilst most compounds in roasted coffee are likely Maillard products (an example of which is not shown in Fig. 1)18, we present various pathways that permit the formation of acids, phenolic compounds, and also the cleavage of cellulose into sugar-related products like levoglucosan. The left-most process in Fig. 1 shows an example of decomposition of a chlorogenic acid (a group of molecules contributing to 66% of the acidity in green coffee) through low temperature hydrolysis, in which the formation of products depend on the water content within the seed19,20.
Figure 1: The roast profile for the Tanzanian Burka (Has Bean).
Figure 1
In this case, 10 kg of the Burka coffee was roasted in a 12 kg Probat Roaster. The temperature was monitored with a probe in the headspace of the oven, and hence the hot air rapidly cools due to thermal energy transfer to the green coffee. The temperature trajectory throughout the roasting process determines the decomposition of organic materials in coffee. Three illustrative decomposition reactions are shown that are representative processes throughout the heating process. At lower temperature a chlorogenic acid (left) may decompose through either hydrolysis or pyrolysis into quinic acid, acetic acid and the phenolic compound 3,4-dihydroxybenzyl alcohol40, or quinic acid, carbon dioxide and 3,4-dihydroxystyrene41,42. Oxalic acid (centre) may decarboxylate to either CO2 or in the case of incomplete combustion CO2 and formic acid19. At higher temperatures cellulose can undergo hydrolysis to smaller sugar derivatives including glucose and levoclucosan43,44,45. Both the temperature and time determine the chemical composition of the roasted coffee: In this case, the coffee was removed from the oven after 9 m 54 s as this time was determined to result in a soluble, sweet and favourably acidic product.
你如果有讀過碩士班
那篇網址下面有文獻
在學術上是拿來寫下一篇論文的
不是假的
怕題目會重覆
除非可以把它推翻
網址中有出現魔王這個牌子
圖片有表示出
差異
PS差8克 有一台叫小精靈 你自己找找就知道是拿個牌子了 我自己主題有發說 求維修文
|
|